Attracting Lagrangian coherent structures on Riemannian manifolds.
نویسنده
چکیده
It is a wide-spread convention to identify repelling Lagrangian Coherent Structures (LCSs) with ridges of the forward finite-time Lyapunov exponent (FTLE) field and to identify attracting LCSs with ridges of the backward FTLE. However, we show that, in two-dimensional incompressible flows, also attracting LCSs appear as ridges of the forward FTLE field. This raises the issue of the characterization of attracting LCSs using a forward finite-time Lyapunov analysis. To this end, we extend recent results regarding the relationship between forward and backward maximal and minimal FTLEs, to both the whole finite-time Lyapunov spectrum and to stretch directions. This is accomplished by considering the singular value decomposition (SVD) of the linearized flow map. By virtue of geometrical insights from the SVD, we provide characterizations of attracting LCSs in forward time for two geometric approaches to hyperbolic LCSs. We apply these results to the attracting FTLE ridge of the incompressible saddle flow.
منابع مشابه
Tracking Attracting Lagrangian Coherent Structures in Flows
This paper presents a collaborative control strategy designed to enable a team of robots to track attracting Lagrangian coherent structures (LCS) and unstable manifolds in two-dimensional flows. Tracking LCS in dynamical systems is important for many applications such as planning energy optimal paths in the ocean and predicting various physical and biological processes in the ocean. Similar to ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملAttraction-based Computation of Hyperbolic Lagrangian Coherent Structures
Recent advances enable the simultaneous computation of both attracting and repelling families of Lagrangian Coherent Structures (LCS) at the same initial or final time of interest. Obtaining LCS positions at intermediate times, however, has been problematic, because either the repelling or the attracting family is unstable with respect to numerical advection in a given time direction. Here we d...
متن کاملAttracting and repelling Lagrangian coherent structures from a single computation.
Hyperbolic Lagrangian Coherent Structures (LCSs) are locally most repelling or most attracting material surfaces in a finite-time dynamical system. To identify both types of hyperbolic LCSs at the same time instance, the standard practice has been to compute repelling LCSs from future data and attracting LCSs from past data. This approach tacitly assumes that coherent structures in the flow are...
متن کاملLagrangian Coherent Structures
Mounting evidence suggests that fluid advection can effectively be studied by considering special material surfaces, which are referred to here as Lagrangian coherent structures (LCSs). What makes these material surfaces special is their distinguished attracting or repelling nature. Notably, LCS are often locally the most strongly attracting or repellingmaterial surfaces in theflow, and as such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2015